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Purpose. To provide the first application of fractal kinetics under steady state conditions to

pharmacokinetics as a model for the enzymatic elimination of a drug from the body.

Materials and Methods. A one-compartment model following fractal Michaelis-Menten kinetics under a

steady state is developed and applied to concentration-time data for the cardiac drug mibefradil in dogs.

The model predicts a fractal reaction order and a power law asymptotic time-dependence of the drug

concentration, therefore a mathematical relationship between the fractal reaction order and the power

law exponent is derived. The goodness-of-fit of the model is assessed and compared to that of four other

models suggested in the literature.

Results. The proposed model provided the best fit to the data. In addition, it correctly predicted the

power law shape of the tail of the concentration-time curve.

Conclusion. A simple one-compartment model with steady state fractal MichaelisYMenten kinetics

describing drug elimination from the body most accurately describes the pharmacokinetics of mibefradil

in dogs. The new fractal reaction order can be explained in terms of the complex geometry of the liver,

the organ responsible for eliminating the drug.
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INTRODUCTION

Pharmacokinetics is the study of the absorption, distri-
bution, metabolism, and eventual elimination of a drug from
the body (1). Pharmacological data usually consist of discrete
values of the concentration of a drug in the plasma or blood
as a function of time. A plot of these values generates a
concentration-time curve that first rises as absorption of the
drug dominates and then decreases after a maximum
concentration value is reached. This decline may be relatively
short or may last for several days, and it is mainly governed
by the rate of elimination of the drug from the body. The
goal of pharmacokinetic modeling is to use these curves to
describe, compare, and predict a drug’s course in the body, as
well as to determine optimum dosing regimes, potential
toxicity, and drugYdrug interactions.

Classical compartmental models are the most common
type of pharmacokinetic models. However, while they can
provide adequate agreement with clinical pharmacokinetic
data sets, they often fail to provide a good fit to the tail
regions, where non-exponential time-dependence can occur
that is better fit by power laws or gamma functions (2,3).
Since all data sets are finite in size, they can always be fit with
a sufficiently large number of compartments and an associ-

ated large number of adjustable parameters. However, this
does not address the origin of the non-exponential behaviour
in pharmacokinetics. A link has been made previously (4) to
the connection between concentration-time curves with
power law tails and fractal kinetics. The objectives of this
paper are to i) identify the existence of long-time tails in the
concentration-time curves of mibefradil in dogs, ii) apply the
theory of fractal enzyme kinetics under steady state con-
ditions to a pharmacokinetic model, and iii) demonstrate how
the model both provides an improved fit to the data and
predicts the existence of the power law tails.

THEORY

Compartmental models are the most common type of
pharmacokinetic models (5). A compartment is defined as
the number of drug molecules having the same probability of
undergoing a set of chemical kinetic processes. The exchange
of drug molecules between compartments is described by
kinetic rate coefficients. The classical compartmental model
is based on two main assumptions: i) each compartment is
homogenous (i.e., there is instantaneous mixing), and ii) the
kinetic rate coefficients are all constant, such that the fraction
of drug transferred between any two compartments is
constant in time. The system is described by coupled first-
order differential equations whose solutions take the form of
a sum of terms that are exponential in time.

Classical kinetics is based on the law of mass action,
which states that the rate v of a chemical reaction is directly
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proportional to the product of the concentrations of the N
reactants each raised to the order ni:

v ¼ k
YN

i¼1

Cni

i ; ð1Þ

where Ci is the concentration of reactant i and k is the kinetic
rate coefficient in units of timej1. The reaction order ni is the
number of concentration terms that must be multiplied
together to get the rate of the reaction (6). For a single
step, ni is typically equal to the molecularity, which is the
number of molecules that are altered during the reaction.
When only one molecule is modified, the reaction is given by

v ¼ kC: ð2Þ

Enzyme Kinetics and the Michaelis-Menten Equation

The rate of enzyme-catalyzed reactions can deviate from
those predicted by classical kinetics. Michaelis-Menten
kinetics (7) is the standard formalism for describing these
reactions. At high concentrations, saturation of the enzymes
limits the maximum reaction rate that can be achieved, while
at low concentrations, the rate of formation of the enzyme-
substrate complex becomes significant and the reaction
becomes dependent on the substrate concentration (8).

Consider the reaction:

Eþ S
�����!k1

 �����
k�1

ES�����!k2
Eþ P ð3Þ

where E, S, ES, and P represent the enzyme, substrate,
enzyme-substrate complex, and product, respectively. If we
denote the concentration of the substrate as C, the concen-
tration of the substrate-enzyme complex as x, and the total
concentration of enzyme as e0, the system is described by the
following ordinary differential equations:

dx

dt
¼ k1 e0 � xð ÞC � k�1 þ k2ð Þx; ð4Þ

dp

dt
¼ k2x: ð5Þ

Using the Briggs-Haldane treatment (6) to simplify the
problem, a quasi-steady-state assumption is made where the
concentration of the substrate-enzyme complex is taken to be
constant, i.e., dx/dt = 0, and the Michaelis-Menten equation is:

v ¼ vmaxC

kM þ C
: ð6Þ

The parameter vmax is the maximum velocity of the reaction,
and the Michaelis-Menten constant KM is the substrate
concentration at half the maximum velocity.

Asymptotics of the Concentration-Time Curve

The solution to a compartmental model with constant
coefficients takes the form of a linear superposition of
exponential terms, and the resulting concentration-time

curve exhibits an exponentially decaying tail. However, there
is evidence that the concentration-time curves of many drugs
exhibit long-time power law tails of the form

C tð Þ � t�g for t > T; ð7Þ

where T marks the time of the onset of the tail. Negative
power laws were first applied, empirically, to describe the
washout of bone-seeking radioisotopes (9,10). Subsequently,
other types of clearance curves have been fit by a single
power law, two sequential power laws, or the gamma
function y tð Þ ¼ at�ae�bt (2,3,11,12). Different explanations
for these fits have been proposed, including a stochastic
random walk model based on the cycling of molecules in and
out of the plasma (13), a set of convectionYdiffusion
equations for transit in the liver (3), and gamma-distributed
drug residence times (14).

In this paper, we introduce a model based on fractal
kinetics with an anomalous reaction order as a physiologi-
cally-based mechanism that generates power law tails using
only one compartment. This model is naturally interpreted in
terms of the anatomy and physiology of the liver, which is the
organ predominantly responsible for drug elimination.

Transient Fractal Kinetics

Anacker and Kopelman (15) found that reactions that
occur on or within fractal media exhibit anomalous kinetics
that do not follow the classical mass-action form. Specifically,
the kinetic rate coefficient is time-dependent (16):

k ¼ k0t�h; ð8Þ

where

h ¼ 1� ds

2
: ð9Þ

The quantity ds is the spectral dimension that describes the
path of a random walker within the medium (17). The
classical case corresponds to ds = 2. Equations (8) and (9)
have been supported by experiments of trapping and binary
reactions on the Sierpinski gasket, percolation clusters, and
lattices with disordered transition rates (16,18Y20). While
Eq. (8) applies to diffusion-limited reactions on fractals, it
also applies to any situation for which h > 0.

Equation (8) has been incorporated into pharmacokinetics
through both non-compartmental and compartmental models.
The former includes the homogeneousYheterogeneous distri-
bution model introduced by Macheras (21) to quantify the
global and regional characteristics of blood flow to organs. The
latter includes the fractal compartmental model developed by
Fuite et al. (22) in which a classical compartment was used to
represent the plasma while a fractal compartment was used to
represent the liver. In this formalism, the rate of elimination
from the liver is given by

v ¼ k0t�hC: ð10Þ

Simulations of the model showed that h plays a significant role
in determining the shape of the concentration-time curve (4).
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Several attempts have been made to incorporate Eq. (8)
into the Michaelis-Menten equation to describe concentration-
dependent reactions that occur in spatially constrained con-
ditions. Kosmidis et al. (23) made the substitution k1 ¼ k0

1t�h

into Eq. (4), producing the formula

v ¼ vmaxC

KM0th þ C
: ð11Þ

They also performed Monte Carlo simulations and found that
Eq. (11) holds mainly when the initial substrate concentration
is high, either through an intravenous (IV) bolus administra-
tion or a high rate of absorption. In addition, they incorpo-
rated Eq. (11) into a one-compartment model. Berry (24)
used Monte Carlo simulations on a 2D lattice to model
enzyme reactions in low-dimensional media, and he found
that h increases independently with increasing obstacle density
on the lattice and increasing initial substrate concentration.
Simulations performed by Aranda et al. (25) also confirm these
results but suggest that KM0 is characterized by multifractality
and hence a set of fractal exponents.

Steady State Fractal Kinetics

As seen above, the effect of complex geometry on the
rate of transient reactions produces an anomalous kinetic
rate coefficient. Anacker and Kopelman (15) demonstrated
that under steady state conditions, however, the effect of the
geometry is manifested as an anomalous reaction order. They
showed that Eq. (2) should be replaced by the effective rate
equation

v ¼ kCX ; ð12Þ

where X is a fractal reaction order related to the spectral
dimension of the random walk. For example (26),

X ¼
1þ 2

ds
for AþA reactions;

1þ 4
ds

for Aþ B reactions:

8
<

: ð13Þ

These equations have been confirmed using Monte Carlo
simulations. Anacker et al. (18) found that X = 2.44 for the
2D Sierpinski gasket and X = 2.01 as expected for the
homogenous cubic lattice. Klymko and Kopleman (27) found
that for bimolecular reactions in solids, X ranged from the
homogeneous value of 2 up to a value of 30. Newhouse and
Kopelman (28) found values of X $ 5 for ensembles of 10 �
10 islands and X $ 15 for ensembles of 5 � 5 islands.
Therefore, as a space becomes more finely divided, as in the
example a fractal dust like the Cantor set (29), ds Y 0 and
X Y V.

A form of concentration-dependent fractal kinetics was
developed by López-Quintela and Casado (30), who pro-
posed the following scaling relationship:

keff ¼ AC1�df 0 � df � 1; ð14Þ

where df is the fractal dimension of the space. The effective
kinetic rate coefficient keff is therefore assumed to be
dependent on the observation scale, here taken to be the

concentration. By applying this equation to vmax, they
obtained the formula:

v ¼ v
eff
maxC 2�df

K
eff
M þ C

; ð15Þ

where v
eff
max and K

eff
M are new constants. For df = 1, the

classical MichaelisYMenten equation is recovered, and as
df Y 0, the complexity of the reaction becomes more and
more important. Heidel and Maloney (31) performed an ana-
lytical exploration of this equation, and initially Macheras (32)
and later Ogihara (33) applied it to model carrier-mediated
transport under heterogeneous conditions.

A seemingly different approach to concentration-depen-
dent fractal kinetics is the Bpower-law formalism^ developed
by Savageau (34), expressed through the generalized mass-
action representation:

dCi

dt
¼
Xr

k¼1

aik

Yn

j¼1

C
gijk

j �
Xr

k¼1

bik

Yn

j¼1

C
hijk

j ; ð16Þ

where a and b are the kinetic rate coefficients and g and h are
the kinetic rate orders associated with each reactant. The
equations for the power-law formalism are complicated and
Savageau admits that this model works best for large series of
reactions rather than one or more reactions catalyzed by only
one enzyme (34). Savageau justifies his formalism by showing
that for homodimeric reactions, its equations are equivalent
to the fractal kinetics equations. However, this equivalence
has yet to be proven for any other reactions due to the
complexity of the equations (35). In principle, it is possible
that Eq. (16) can be obtained by summing over several
Michaelis-Menten reactions.

To summarize, any reaction for which h > 0 or X > n is
referred to as following fractal-like kinetics (36). In this
paper, an alternative formulation of dose-dependent fractal
kinetics is proposed based on fractal reaction orders under
steady state conditions.

MATERIALS AND METHODS

Model

In a strict sense, a steady state regime means that the con-
centration of the reactant is constant in time, i.e., dC/dt = 0.
One way in which this can be achieved is if the concentration
of drug molecules is much greater than the concentration of
enzymes, even if the local concentration values vary consid-
erably. Even in the presence of drug elimination, a steady
state can be maintained due to the recycling of drug mole-
cules by the circulatory system. It is important to distinguish
this steady state achieved through recycling from the steady
state defined for chronic drug administration. In the latter,
drug is administered through multiple doses or a constant
infusion, and the elimination rate eventually becomes equal
to the infusion rate. The steady state in the current theory
can be considered as a local approximation to the same
condition.
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If the environment is heterogeneous, the system is
described by the equations:

dx

dt
¼ k1 e0 � xð ÞCX � k�1 þ k2ð Þx; ð17Þ

dp

dt
¼ k2x: ð18Þ

Applying the quasi-steady-state assumption, dx/dt = 0, the
following equation is derived:

v ¼ vmaxCX

KM þ CX
ð19Þ

It can be noted that Eq. (19) has the same form as the Hill
equation that describes the response of a patient or tissue as
a function of the drug concentration (8). Incorporating this
formula into a one-compartment model with an IV infusion
yields

dC

dt
¼ � vmaxCX

KM þ CX
þ i tð Þ

Vd
; ð20Þ

where i(t) is the infusion rate in units of mass/time and Vd is
the volume of distribution in units of volume.

To investigate the asymptotics of Eq. (20), we consider
the model post-infusion. For high concentrations (those
occurring well above KM):

dC

dt
¼ �vmax: ð21Þ

For low concentrations (those occurring far below KM):

dC

dt
¼ � vmax

KM
CX : ð22Þ

Integrating Eq. (22) leads to the asymptotic power law
behaviour

C tð Þ � t
1

1�X : ð23Þ

Comparing to Eq. (7) yields the relationship

g ¼ 1

1�X
ð24Þ

or

X ¼ 1� 1

g
: ð25Þ

Note that Eqs. (23Y25) are undefined for X = 1, since this
value corresponds to the classical model with an exponential
tail, which is inconsistent with a power law.

The fact that the proposed steady state model predicts
long-time power law behaviour provides a point of compar-
ison with other models. The Michaelis-Menten model
predicts an exponential tail, and the transient fractal and
fractal Michaelis-Menten equations predict stretched expo-
nential tails of the form õexp(at1jh).

Data Analysis

Concentration-time data were obtained for the cardiac
drug mibefradil (37) in four dogs. The dogs received a dose
of 1 mg/kg of mibefradil infused over 10 min. The analysis of
the data consists of the following steps: (1) quantification of
the shape of the tail, (2) comparison of the fit of the proposed
model with that of existing models, and (3) testing of the
relationship expressed in Eq. (25).

The value and standard deviation of the power law tail
exponent g were calculated from the concentration-time
curves using linear regression analysis of the log-transformed
data.

The models were fit to the data using a parameter optimi-
zation method based on a simulated annealing (SA) algorithm
implemented in C++. The SA algorithm (38) minimizes an
objective function through an efficient exploration of the
parameter space. All downhill moves are accepted and
selective uphill moves are allowed according to the Metropolis
algorithm and an effective temperature. At the start of the
annealing process, the temperature is relatively high com-
pared to the standard deviation of the objective function, and
the probability of accepting an uphill move is great. Hence, the
random walk is able to explore a wide area of parameter space
without getting trapped in local minima. As the temperature is
decreased, the algorithm is able to focus in on the most
promising areas and locate the global minimum.

The SA algorithm has many advantages over other opti-
mization methods. It is largely independent of the starting
values, it can escape local minima through selective uphill
moves, and the underlying function need not be continuous.
The SA method has been found to be superior to the simplex
method, the Adaptive Random Search, the quasi-Newton algo-
rithm, and the Levenberg-Marquardt algorithm in finding the
optimum of continuous functions (39Y41).

The objective function was chosen to be the weighted
residual sum of squares (WRSS) (42):

WRSS ¼
Xn

i¼1

Ci � bCi

� �2

bC 2

i

2
64

3
75; ð26Þ

where bCi denotes the predicted value of Ci based on the
given model. The goodness-of-fit of each model was assessed
using the Akaike Information Criterion (AIC), which takes

Table I. Summary of Models for the Enzyme-Mediated Kinetics of

Drug Elimination

Model Reference Abbreviation Reaction Rate

Fractal (22) F k0tjhC

Michaelis-Menten (7) MM vmaxC
KMþC

Transient fractal

Michaelis-Menten

(23) FMM vmaxC
KM0thþC

LópezYQuintela fractal

Michaelis-Menten

(30) LQC v
eff
maxC

2�df

K
eff

M
þC

Steady state fractal

Michaelis-Menten

SSFMM vmaxCX

KMþCX
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into account the WRSS as well as the number of model
parameters, Npar, and the number of data points, Nobs (42):

AIC ¼ Nobs ln WRSSð Þ þ 2Npar: ð27Þ

A lower value indicates a better fit. Five one-compart-
ment models were fit to the data sets, and they are summarized
in Table I.

RESULTS

The shape of the tail was determined for the four data
sets and was found to be a straight line on a logYlog plot,

indicating a power law relationship. The values for the power
law exponent g are listed in Table II. The power law tail
extends over three orders of magnitude in time, and the
goodness-of-fit represented by the R2 value is greater than
0.9 for every dog. This result indicates that the SSFMM
model is an appropriate model for the data.

The results from the model fits are listed in Table III.
The MM model performs the worst. Furthermore, the values
that it predicts for the volume of distribution are unrealisti-
cally low for three of the four dogs. In contrast, the Vd values
for the other models are reasonable for a dog and are
consistent with each other. Furthermore, the KM values for
the MM model are almost two orders of magnitude higher
than the values for the LQC, FMM, and SSFMM models.
The values for the intrinsic clearance, vmax/KM, are also at
least one order of magnitude smaller than those predicted by
the other models. These results indicate that classical
Michaelis-Menten kinetics does not adequately describe the
elimination of mibefradil from the dog.

The LQC, F, and FMM models provide some improve-
ment. However, in the case of the LQC model, the reaction
orders of 2jdf yield values of zero for the fractal dimension,
df, essentially eliminating the fractal nature of the model. In
the case of the F and FMM models, the exponent h takes the
maximum value of 1.

Table II. Slope g of the Log(Concentration) versus Log(Time) Curve

Between t = 30 min and t = 1440 min

Dog g R2

1 j0.702 (0.028) 0.991

2 j0.464 (0.049) 0.927

3 j0.597 (0.024) 0.989

4 j0.705 (0.066) 0.943

Values are given as mean (standard deviation).

Table III. One-Compartment Parameters for the Drug Concentration in the Jugular Vein of Dogs Following a 10-min Infusion of 1 mg/kg of

Mibefradil

Value

Model Parameter Dog 1 Dog 2 Dog 3 Dog 4 Mean

MM vmax(ng/ml/min) 327 4,699 4,737 4,375

KM(ng/ml) 96,593 101,139 100,131 101,046

Vd(l) 10.5 0.00369 0.00361 0.00405

WRSS 7.27 11.0 11.0 11.0

AIC 31.8 37.2 37.2 37.2 35.9

LQC v
eff
max (ng/ml/min) 587 847 363 623

K
eff
M (ng/ml) 5,323 6,961 4,702 5,693

Vd(l) 7.21 8.45 4.64 5.67

2-D 2.00 2.00 2.00 2.00

WRSS 2.68 4.06 4.15 3.05

AIC 20.8 26.2 26.5 22.5 24.0

F k0(/min) 1.01 1.16 1.03 1.21

Vd(l) 4.80 4.31 4.95 3.55

h 0.999 0.999 0.998 0.998

WRSS 2.56 5.33 3.74 4.14

AIC 18.2 27.8 23.2 24.5 23.4

FMM vmax(ng/ml/min) 4,358 3,306 2,486 4,170

KM0 (ng/ml) 4,623 3,638 2,709 4,401

Vd(l) 6.04 11.0 10.1 12.0

h 1.00 1.00 1.00 1.00

WRSS 2.01 1.82 2.01 2.01

AIC 17.1 15.8 17.1 17.1 16.8

SSFMM vmax(ng/ml/min) 3,575 8,201 3,548 3,817

KM (ng/ml) 5,217 799 6,778 7,098

Vd(l) 1.30 2.39 16.5 9.54

X 2.56 3.35 2.74 2.61

WRSS 0.845 0.263 0.219 0.544

AIC 5.99 j9.38 j11.7 0.0797 j3.75
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The SSFMM model provides the best fit to all data sets.
The values for X determined from the model fit were
compared to those calculated from the power law tail
exponent g using Eqs. (23) and (25), and the results are listed
in Table IV. The values agree within error for all but Dog 1.
Fig. 1a) shows the power law tail for Dog 3, and Fig. 1b) shows
the same data fit by the SSFMM model. The proposed model
accurately describes the concentration-time curve at all
concentration levels.

According to Eq. (22), the existence and onset of the
power law tail correlate with the value of KM, and the power
law behaviour should only exist for C << KM. The values

Table IV. Comparison Between the Values for the Fractal Reaction

Order X Predicted from the Slope g and Obtained from the Model Fit

X

Dog Predicted from g Model value

1 2.42 (0.10) 2.56

2 3.16 (0.33) 3.35

3 2.68 (0.11) 2.74

4 2.41 (0.22) 2.61
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Fig. 1. Concentration-time curves for mibefradil data for Dog 3. (a) LogYlog plot showing the long-time

power law tail from 30 to 1,440 min. The dashed line is the regression line with g = j0.597 T 0.024. (b)

The same data but the dashed line now represents the best-fit curve found using the steady state fractal

model with X = 2.74.
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estimated for KM by the SSFMM model range from 800 ng/
ml to 7,000 ng/ml and are between 30 and 90% higher than
the maximum plasma concentrations (556.1 to 1,400 ng/ml).
Therefore, the power law tails are observable because the
dose of mibefradil given to the dogs in this study leads to
plasma concentrations well below saturation levels. Further-
more, Eq. (22) can be interpreted alternatively in terms of a
concentration-dependent vmax of the form v

eff
max ¼ vmaxCX�1 .

When the approximate Eq. (22) was used instead of Eq. (19),
it resulted in similar parameter values as the SSFMM model but
with a poorer fit to the rise of the curve.

DISCUSSION

One-compartment models are simplifications; however,
they can provide an accurate and adequate fit if the
distribution of the drug is rapid and equilibrium is achieved
quickly in all tissues. In this study, we used a one-compart-
ment model to show that anomalous reaction orders can be a
reflection of the heterogeneous nature of the medium under
which drug metabolism occurs. Two concepts need to be
elaborated upon: the meaning of a steady state and the
meaning of noninteger reaction orders.

It is well-known that the liver has a complex geometry.
The blood vessels supplying it are arranged as a fractal tree
(43), its cellular network has fractal properties (44), and the
perfusion of blood at the terminal branches is heterogeneous
(45). Both transient and steady state reactions occurring
within such spaces can exhibit anomalous behaviour. For
transient reactions, it is assumed that there is a random
distribution of reactants (36). Therefore, anomalous kinetics
in the transient case strictly results from the decreased
efficiency of random walkers in exploring their irregular
space (quantified by ds). In the steady state regime, however,
there is an influx of molecules. In regular geometries, this
influx can cause a net stirring effect (36); however, in fractal
and confined geometries, self-stirring is inefficient. The
spaces are instead characterized by large fluctuations in the
local concentration and an increasing segregation of mole-
cules (26). This effect has been reported for reactionYdiffusion
phenomena in physical systems (46). As a result, under steady
state conditions, the distribution of molecules is partially or-
dered due to the influx of molecules, and the nonrandomness
reduces the reaction probabilities and consequently the reac-
tion rate. To summarize, transient fractal kinetics occur in well-
stirred heterogeneous media while steady state kinetics occur in
poorly stirred heterogeneous media. Here, the term heteroge-
neous describes to the geometry of the environment.

In the case of steady state fractal kinetics, Klymko and
Kopelman (27) interpreted noninteger values of X as charac-
teristic of a microscopically heterogeneous medium that is best
described as a collection of kinetically independent clusters.
The kinetic rate coefficients are then kinetic averages taken
over domains of different sizes and local concentration. This
interpretation is consistent with the studies that reported high
X values for reactions occurring on clusters and islands (28,47).
A similar model can be developed for the liver, the organ
predominantly responsible for the elimination of mibefradil
from the body. The metabolic enzymes are located in the liver
cells, called hepatocytes, which are organized around the
terminal supply vessels. Each set of vessels and their surround-

ing cells are called a sinusoid. Not only does each sinusoid have
a different number and distribution of hepatocytes, it receives a
different portion of the blood flow. Therefore, the liver can be
considered as a network of clusters of sinusoids. Because X
increases as the size of the clusters decreases (28), X = 1 means
that the liver acts as a homogeneous, well-mixed compartment
and X > 1 indicates segmentation and a lack of mixing.

This interpretation is consistent with a model proposed
by Weiss (45), who described the transit times in the liver as
being determined by both the micromixing and macromixing
processes. He suggested two models at different ends of the
spectrum: i) a distributed model in which the sinusoids are
parallel and there is complete segregation of the pathways,
and ii) a dispersion model in which the sinusoids are
interconnected and there is perfect micromixing. Considering
our results in this framework, X provides a quantitative
measure of the degree of micromixing between sections of
the liver and locates the model somewhere between Weiss’s
two extreme models.

CONCLUSION

This paper provides the first application of fractal kinetics
under steady state conditions to pharmacokinetics. We have
demonstrated that a steady state fractal Michaelis-Menten
equation best describes the elimination of the drug mibefradil
from dogs. Furthermore, it accounts for the long-time power
law behaviour of the concentration through the inclusion of a
fractal reaction order, X. This anomalous reaction order
suggests that the liver, the organ of elimination for mibe-
fradil, is best treated as a collection of clusters of sinusoids.
The higher the value of X, the less mixing that occurs
between adjacent sinusoid clusters.

We conclude that transient fractal kinetics is appropriate
for describing reactions that occur within well-mixed hetero-
geneous environments, while steady state fractal kinetics
better describes reactions that occur in understirred hetero-
geneous spaces. The latter can occur due to the continuous
influx of drug molecules through recycling in the circulatory
system. Finally, although the proposed one-compartment
model is sufficient for fitting curves with a single power law
tail, curves described by consecutive power laws may require
more than one compartment.
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